Skip to main content

Subnets Overview

Avalanche features 3 built-in blockchains: Exchange Chain (X-Chain), Platform Chain (P-Chain), and Contract Chain (C-Chain). All 3 blockchains are validated and secured by the Primary Network. The Primary Network is a special subnet, and all members of all custom subnets must also be a member of the Primary Network by staking at least 2,000 AVAX.

Primary network

Subnets

A subnet, or subnetwork, is a dynamic subset of Avalanche Primary Network validators working together to achieve consensus on the state of one or more blockchains. Each blockchain is validated by exactly one subnet. A subnet can have and validate many blockchains. A validator may be a member of many subnets.

Subnets are independent and don’t share execution thread, storage or networking with other subnets or the Primary Network, effectively allowing the network to scale up easily. They share the benefits provided by the Avalanche Protocol such as low cost and fast to finality.

A subnet manages its own membership, and it may require that its constituent validators have certain properties. This is very useful, and we explore its ramifications in more depth below:

Compliance

Avalanche’s subnet architecture makes regulatory compliance manageable. As mentioned above, a subnet may require validators to meet a set of requirements.

Some examples of requirements include:

  • Validators must be located in a given country
  • Validators must pass a KYC/AML checks
  • Validators must hold a certain license

(To be abundantly clear, the above examples are just that: examples. These requirements do not apply to the Avalanche Primary Network.)

Support for Private Blockchains

You can create a subnet where only certain pre-defined validators may join and create a private subnet where the contents of the blockchains would be visible only to those validators. This is ideal for organizations interested in keeping their information private. See here for more info.

Separation of Concerns

In a heterogeneous network of blockchains, some validators will not want to validate certain blockchains because they simply have no interest in those blockchains. The subnet model allows validators to only concern themselves with blockchains that they care about. This reduces the burden on validators.

Application-Specific Requirements

Different blockchain-based applications may require validators to have certain properties. Suppose there is an application that requires large amounts of RAM or CPU power. A Subnet could require that validators meet certain hardware requirements so that the application doesn’t suffer from low performance due to slow validators.

Virtual Machines

A Virtual Machine (VM) defines the application-level logic of a blockchain. In technical terms, it specifies the blockchain’s state, state transition function, transactions, and the API through which users can interact with the blockchain. Every blockchain on Avalanche is an instance of a VM.

When you write a VM, you don't need to concern yourself with lower-level logic like networking, consensus, and the structure of the blockchain. Avalanche does this behind the scenes so you can focus on the thing you would like to build.

Think of a VM as a blueprint for a blockchain; you can use the same VM to create many blockchains, each of which follows the same ruleset but is logically independent of other blockchains.

Developing Your Own Subnet

Please check out documents listed on the left panel to develop your own subnets with customized virtual machine and blockchain.